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1. Introduction 

With increased understanding into the optimal dynamics of a model due to 
Robinson, Solow and Srinivasan, the so-called RSS model^ three points of 
methodological significance attain salience: a dramatic difference between the 
discrete- and continuous-time analyses, a suggestion for a unified analysis in 
the emergence of the undiscounted case as a guiding marker for the discounted 
case, and an important, if not indispensable, role for plane geometry as a com
plementary engine of analysis. 

As regards the first issue, it is not the case that the undiscounted continuous-
time analysis obtained by Stiglitz [40], and reconfirmed in [13]^, is the cor
rect idealized limit for that presented in the discrete-time setting in [16, 45]. 
Put another way, it is not apparent how qualitative properties of the discrete-
time dynamics can be interpreted as valid approximations to those obtained in 
continuous-time: policies identified by Stiglitz as optimal in one formulation, 
are shown to be bad, leave alone non-optimal, in another; and a parameter ̂ (^, 
formalizing the marginal rate of transformation of machines of a particular 
type a from one period to the next, and governing circumstances under which 
monotone dynamics are transformed into cyclical optimal behavior, stationary 
and damped, simply plays no role when time cannot be divided into distin
guishable periods of a given length^. In a nutshell, the asymptotic implementa
tion of Stiglitz' results for the RSS model remains yet to be accomplished"*. 

With respect to the second issue, preliminary computations suggest it to be 
the case that for certain ranges of the parameter ^^, optimal programs in spe
cific examples of the RSS model are independent of the discount factor p when 
it is restricted to non-degenerate and determinate intervals, and that chaotic 
behavior arises only when this discount factor is below a computable thresh
old; see [11, 17]. It appears that the RSS model offers a particularly sharp 

^ This is the terminology proposed in [16]. This paper may be referred to for variants 
of the model as well as for detailed references to earlier work. For the results that 
are antecedent to those presented here, the reader is referred to [16, 14, 15, 11, 17], 
[45] and [27], among other (ongoing) work. 

^ In [40], Stiglitz obtains the optimal trajectories in the undiscounted case simply 
by equating the discount factor to unity in formulae obtained through the use of 
Pontryagin's maximum principle for the discounted case. In [13], his insight is rig
orously substantiated through an analysis based on the overtaking criterion and on 
Brock's ideas. 

^ See Examples 1 and 2 in [16]. For a complete characterization of optimal policies 
in a two-sector RSS model without discounting and with a linear felicity function, 
see [14, 15]. 

^ This paragraph has benefitted from conversations with Leo Hurwicz and Roy 
Radner at the Tokyo Conference. Its parallel to relevant situations of games (and 
economies) with a continuum of agents and/or a continuum of (dispersed) informa
tion are too close to be ignored, see [18] and work subsequent to it. 
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instance of the fact that the unit discount factor is not a bifurcation, and that for 
a range of parametric values, the qualitative properties of the optimal dynam
ics of the discounted and undiscounted cases remain unchanged. All this is in 
keeping with the insight that the undiscounted case is an important analytical 
benchmark for the discounted analysis even if one does not find compelling 
the philosophical grounds of Ramsey and of others^ for the use of a zero dis
count rate in the determination of optimal intertemporal allocation of certain 
resources. In the available general theory, this insight has been articulated most 
forcefully by McKenzie [24, Introduction]; involving as it does a determinate, 
unit value of an important parameter in the rate of time preference, or alterna
tively, the degree of impatience, he has argued for the antecedent priority of 
the undiscounted case on the grounds of simplicity. We have yet to fully under
stand the robustness of this prescription^, but here we establish a particularly 
strong version of it in the context of the two-sector RSS model. 

Finally, as regards the importance of plane geometry, it is the case that the 
parameter ĉr that somewhat incidentally emerged in the multi-sectoral analy
sis of the undiscounted case presented in [16], attains its determining role as 
the slope of the zero value-loss line (the von-Neumann facet) in the two-sector 
analysis presented in [14]. Such a line, together with the 45°-degree line and 
the cobweb diagrams associated with it, can be used to furnish a complete char
acterization of the optimal policies, both in the short- and in the long-run. In
deed, subsequent work in [15] and [45] has built on this analysis to identify ^a-
to be the crucial bifurcation parameter for the full RSS model; the geomet
rical identification of the optimal policy function can be used for a rigorous 
algebraic verification as is done in [15].^ The simplicity of the two-sector ver
sion of the RSS model allows its reduced form expression to be diagrammed 
in the two-period (today-tomorrow) plane, and thereby the model's apparent 
intricacies rendered transparent by methods of plane geometry. To be sure, 
such diagrams are available in McKenzie's work^, and used more explicitly by 
Boldrin-Deneckere, Nishimura-Yano and others to develop anti-turnpike theo
rems^, but they had not been used previously, in of themselves, as an exclusive 

^ In addition to Ramsey [35] and Koopmans [19], see [9] for discussion and addi
tional references. 

^ To be sure, McKenzie's prescription has not always been followed; see for example 
the textbook [42] and the monograph [20]. Majumdar-Nermuth [21] is a notable 
exception in presenting a unified analysis of the two cases. 

^ It should be noted that this has been accomplished in almost full measure but not 
completely; there still remains a claim about the optimal policy correspondence for 
the case ̂  = 1 in [14] that has not been verified in [15]. 

^ See the relevant figures in [23, 24, 25, 26]. 
^ Such a theorem refers to the determination of parametrizations of two-sector models 

that generate chaotic dynamics; see [2] and [31, 32, 33]. For detailed discussion and 
additional references to the work of these authors, see [14, Section 10]. 
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vehicle to obtain a complete characterization of the optimal policy correspon
dence in an undiscounted setting. More specifically, their promise remains yet 
to be investigated for the discounted setting. 

In this essay, we focus on the second and third issue as a prelude for a fuller 
future investigation of the first, and since all of our methodological points can 
be fully articulated in a two-sector setting with a single type of machine, we 
limit ourselves to it. 

We show that the geometrical apparatus developed in [14] for the undis
counted case with linear felicities carries over in almost "full measure" to the 
discounted case. In particular, part of the role of the 45°-degree line is taken 
over by a line with slope 1/p, the zero-value loss line, now reckoned in terms 
of the modified golden-rule prices, and is shown to be independent of p. Fur
thermore, by retaining all of the features identified in the earlier analysis, it 
leads to the somewhat surprising conclusion that the von-Neumann facets and 
the modified golden-rule stock remain the same as in the undiscounted case. 
Thus, once these basic features of the geometry are in place, one can see at 
a glance why the undiscounted and discounted dynamics remain identical in 
all cases where ^ lies in the range - 1 < ^ < 1.̂ ^ The case ^ > 1 proves more 
recalcitrant, and it is clear that its complete solution must have a recourse to 
analytical methods. Nevertheless, the outlines of a possible solution are offered 
by a consideration of specific cases amenable to a geometric representation and 
the computation of specific numerical examples; we offer a detailed analysis 
of one case within this regimen. The case ^ = 1 is easier, but it is also one in 
which the discounted and the undiscounted cases are not identical; therefore 
we also consider its analysis on its own. All in all, the geometry enables the 
undiscounted and discounted formulations to be put on the same table, so to 
speak, and leads to a satisfying unification of the analysis. 

The rest of the essay proceeds as follows. Section 2 outlines the two-sector 
RSS model, and Section 3 recalls the basic results of the undiscounted case 
and the geometry that is used to prove them. Section 4 delineates the modifi
cations that are required once discounting is introduced; and in particular, they 
lead to the the discovery of a line dual to the zero-value loss line MV pre
sented and discussed in [14]. This line determines the capital stock that gives 
rise to a two-period cycle^^ and is an important geometrical benchmark for 
the model. Section 5 uses the geometrical apparatus to give a complete char
acterization of the policy function for all values of ^ in the interval ] - l , 1[. 
Section 6 focusses on the parametrization ^(1 — d) = 1, a geometric situation 
in which two important lines are perpendicular, and section 7 the case ^ = 1, 

°̂ In the two-sector case with a single type of machine, there is no need for the sub
script cr. 

^̂  While important for the subsequent analysis, the general importance of two-period 
cycle is discussed in [30]. 
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another geometric situation in which two important lines are perpendicular. It 
is this perpendicularity that makes these two cases particularly amenable to ge
ometrical analysis. Section 7 is the heart of the paper, at least from the point of 
view of economic substance. It shows the existence of a continuum of optimal 
4-period cycles and the impossibility of chaotic behavior when the discount 
factor lies in a particular interval^^. We conclude the essay with some sum
mary observations regarding possible directions for further work. 

2. The two-sector RSS model 

A single consumption good is produced by infinitely divisible labor and ma
chines with the further Leontief specification that a unit of labor and a unit of 
a machine produce a unit of the consumption good. In the investment-goods 
sector, only labor is required to produce machines, with a > 0 units of la
bor producing a single machine. Machines depreciate at the rate 0 < d < 1. 
A constant amount of labor, normalized to unity, is available in each time pe
riod t G IN, where IN is the set of non-negative integers. Thus, in the canonical 
formulation surveyed in McKenzie (1986, 2002), the collection of production 
plans (x, x'), the amount x' of machines in the next period (tomorrow) from 
the amount x available in the current period (today), is given by the transition 
possibility set 

n = {{x,x') G IR+ : x' - (1 - ĉ )x > 0 and a{x' - (1 - d)x) < l } , 

where IR_|_ is the set of non-negative real numbers, z = {x' — {1 — d)x) is the 
number of machines that are produced in the period t, and z > 0 and az < 1 
respectively formalize constraints on reversiblity of investment and the use of 
labor. For any (x, x') G r̂ , one can consider the amount y of the machines 
available for the production of the consumption good, leading to a correspon
dence A: Q —> IR+ with 

A(x,xO = {y eJR+:0<y<x md y < 1 - a {x' - {1 - d)x)}. 

The preferences of the planner are generally represented by a felicity func
tion, w: 1R+ —> IR, which is assumed to be continuous, strictly increasing 
and concave, and differentiable^^. Finally, the reduced form utility function, 
u: r̂  —^ IR+, is defined on Q. such that 

^̂  The eminent possibility of optimally chaotic trajectories for low enough discount 
factors is established in [17]. For further background, the reader can see [1], 
[5], [32]. 

^̂  In this essay, we shall be working under the standing hypothesis that the felicity 
function w{') is linear; these hypotheses are being presented as a general introduc
tion to the two-sector RSS model. 
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u{x,x^) = mdix{w{y) : y G A(x,x')}. 

An economy E consists of a triple (^, u, p), 0 < p < 1 the discount fac
tor, and the following concepts apply to it. A program from Xo is a sequence 
{x{t)\y{i)} such that x(0) = Xo, and for all t e IN, {x{t),x{t + 1)) e fi 
and y{t) G A((a:(^),x(t + 1)). A program {x{t)^y{t)} is simply a program 
from x(0), and associated with it is a gross investment sequence {z{t 4-1)} and 
a consumption sequence {c{t +1)} as specified above. A program {x{t),y{t)} 
is called stationary if for all t G IN, {x{t),y{t)) = {x{t + 1), 2/(t + 1)). For all 
0 < p < 1, a program {x*(t), y*(t)} from Xo is said to be optimal if 

5 ^ p* [t/(x(0, ^(t + 1)) - u{x*{t), x%t + 1))] 
0 

oo 

= ^ p * [ « ; ( c ( t + l ) ) - « ; ( c * ( f + l ) ) ] < 0 

t=0 

t=0 

for every program {x{t),y{t)} from XQ. The case p = 1 will be referred to as 
the undiscounted case, and in this case, a program {x*{t), y*(t)} from Xo is 
called optimal if ̂^ 

l iminf^[u(a:( t) ,x(^ + l ) ) -u(x*( t ) ,x*( t + l))] 

T 

= l i m i n f ^ [ ^ 2 / ( 0 ) - ^ ( 2 / * ( * + l ) ) ] < 0 

for every program {x(t), 2/(0} ̂ ^^^ ^o- ^ stationary optimal program is a pro
gram that is stationary and optimal. 

The above expressions are routinely modified for the case of a linear felicity 
function. What is important and well-understood is that the linearity of w{') 
does not imply the linearity of the reduced-form felicity function ti(-, •). The 
reduced-form model is now completely determined by the three parameters 
(a,d,p). 

3. Geometrical antecedents 

In this section, we recall without proof the basic geometrical apparatus for 
the analysis of optimal programs in the undiscounted two-sector RSS model 

^̂  This is the overtaking criterion of Atsumi (1965) and von Weizsacker (1965). Brock 
(1970) refers to our notion of optimality as weakly maximal; the reader is also re
ferred McKenzie (1986) and Mckenzie (2002, p.256). Even though our primary 
emphasis is on the discounted case, the thrust of this essay is the essential comple
mentarity of the two cases. 
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x' = x(t+1) 

Labor constraint: 
/ x'={1-d)x+(1/a) 

Depreciation constraint: 
x*=(1-d)x 

D 

x=x(t) 

Coordinates: M = (0,1/a), G = {x,x), R = (0, ((p-l)/p)x), 
V={l,(1-d)) 

Fig. 1. Determination of the discounted golden-rule stock, the discounted 
golden-rule price system and the no value-loss line. 

developed in [14]. Consider the today-tomorrow diagram furnished as Figure 1 
and note that the transition possibility set Q. is given by the "open" rectangle 
LVOD, The indifference curves of the reduced form utility function u(-, •) are 
kinked lines, the kink lying on VM, with a vertical arm below it and an arm 
with slope d to the right of it, the levels of indifference increasing as we move 
southeast. Thus OVL is the indifference curve with zero utility. 

Given this specification of technology and preference, it is easy to see that 
the golden-rule stock x is given by G, the plan that yields the highest utility 
among all plans in the triangle bounded by OV, VL and the 45°-degree line. 
More formally, it is the unique plan that satisfies 

u{x^x) > u{x,x') for all (x,x') G Cl such that x < x'. 

Indeed, the geometry allows a quick algebraic determination of the value of the 
golden-rule stock in terms of the two parameters of the mode, a and d. Focus 
on the line VM in Figure 1, and note that 
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G'G a X 
1 

l-\-ad 
_]_ _ d(l + ad) _ d 
ax ad 1 — X' 

which implies that the slopes of the lines M'M" and of OVi are identical. 
The essential innovation in this treatment is the MV line: it is not only 

a line delineating preferences — a preference-delineator line, so to speak — 
but it is also a locus of plans that represent full employment and full capacity-
utilization, and as such, yield zero-value loss at the golden-rule price system p. 
This is to say that MV is the von-Neumann facet (of course, with the McKenzie 
facet, as named in [12], as a well-identified subset)^^. Furthermore, the slope 
of MV is given by ((1 — p)/p), and lines parallel to it are constant value-loss 
lines, with higher values with movement away in either direction. 

But these observations, along with elementary cobweb-type arguments, fur
nish a complete analysis of optimal growth in the model. When the initial cap
ital stock is in the interval [0,1], and the MV line has a slope in absolute value 
of less than or equal to one, any plan that begins on the MV line stays on 
the MV line, and thereby makes zero-value losses and is therefore optimal by 
Brock's theorem [3]. In these circumstances, it is easy to see that for all initial 
capital stocks in the range greater than unity, the minimum value-loss policy is 
to choose a plan on MD, and thereby again insure optimality. And so the only 
difficult issue concerns the case when the slope of the MV line is greater than 
unity in absolute value. With the help of value-loss computations extending 
over at most three periods, it can be shown the optimal policy function in this 
case also has a horizontal segment — as the line VGGiD in Figure 4 below. 

There is, however, another surprising result that goes beyond the compu
tations of minimum value-loss trajectories. This is the identification of opti
mal trajectories for the case ^ = 1 that are not minimum value loss trajec
tories. This is the case of indeterminacy of optimal growth in the two-sector 
RSS model, a situation when an optimal policy correspondence, rather than 
a function, obtains. In terms of Figure 2, such a correspondence includes the 
triangle GMGi in addition to the two arms VG and GiD. The reason for what 
at first appears to be a surprising result becomes clear when the reader recalls 
that Brock's theorem, [3], only offers minimum value-loss as a sufficient condi
tion for the optimality of a program. For the details of the geometric argument. 

^̂  Recall from McKenzie, [22], the von-Neumann facet to be the set of all plans in the 
transition possibility set, Q in our case, that make zero value-loss at the golden rule 
prices, and in the discounted case, [23, 24], at the discounted golden-rule prices. 
The Mckenzie facet is a subset of the von-Neumann facet such that the program 
never leaves it after it enters it. For a formal treatment, [12]. 
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x'=(i/p)x-K(p-l)/p)x 

Negative shortfall from 
golden-rule utility 

45^ line 

Fig. 2. Iso-value-loss lines. 

the reader is referred to [14]. For a general theory of dynamic programming 
w ĥich establishes all those results analytically, and thereby complements the 
geometrical treatment, the reader can see [15]. 

In summary, it is the MV line and its properties that make the geometric 
analysis viable in the undiscounted case, and the first methodological point to 
be made in this essay is that it is precisely these characteristics of the MV line 
that extend to the discounted case in almost "full measure". 

4. Geometry for the discounted setting 

The geometry for the discounted case can perhaps be introduced best by the 
statement that part of the role of the 45°-degree line in the geometrical ap
paratus for the undiscounted case, its role relating to the computation of the 
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value-losses at the golden-rule prices, is taken over by a line with slope (1/p) 
and ordinate ((p — 1)/p)x, x being the golden-rule stock. It is evident that with 
p equal to one, this line reduces precisely to the 45°-degree line. We now turn 
to the details that implement this observation. 

In Figure 1, keeping in mind the fact that the indifference curves of the 
reduced-form felicity function u(-, •) and the transition possibility set 17 have 
nothing to do with the discount factor, impose on the undiscounted geometry 
a line RG with slope p~^ passing through G and intersecting the F-axis at the 
point R,^^ and the corresponding rectangle ORR'G". Another entry into the 
geometry for the discounted case from the undiscounted one is through this 
rectangle. As the rate of time-preference and the degree of impatience become 
small, p tends to one, and the rectangle tends to the the segment OG". 

To determine the discounted golden-rule stock, note that̂ ^ 

OR + GG" OR-\-x _i ^ ^ ,,̂  ^ . _ 
RR^ = - ^ = ' '=>OR={{l-p)/p)x^ 

and hence the slope of the line i?G'' (and the negative slope of the line OR^) is 
given by (1 — p)/p. Once the slope and intercept of RG are identified, we can 
obtain its equation as 

x' = p~^x -h p~^{p — l)x. 

But this allows the observation that the point G yields the highest utility among 
all plans in Q which lie "above" the line RG. More formally, 

u{x^ x) > u(x, x') for all (a:, x') G Ct such that x < {1 - p)x -h px\ 

Since u{x, x) > n(0,0), x satisfies precisely the definition of the discounted 
golden-rule stock as in [6], [10, Definition 5] [23, 25] and [29]. This fur
nishes two results of consequence: first, the golden-rule stock is the discounted 
golden-rule stock, and second, as a consequence of the first, it is invariant to 
changes in the discount factor. These results are a direct consequence of the 
kinked indifference curves in our model, and also underscore the importance 
of viewing the discounted and undiscounted cases under one rubric. Note that 
this has allowed us to convert in the particular case of our simple model, a fixed-
point problem into a maximization problem. 

^̂  Whenever we refer to the line RG, we shall mean RG extended at least till it inter
sects the line ML, Lines with slope of p~^ play a prominent illustrative role in the 
diagrams of Lionel McKenzie ([25, Figure 2], [26, Figure 8]); here the line RG is 
used as an engine of analysis. This line is referred to as p^^ by McKenzie, k being 
his notation for the discounted golden-rule stock (to be formally defined below); 
his line p^^ is the line OVi in Figure 1, RG shifted upwards to pass through the 
origin. 

^̂  We continue to abuse terminology by denoting a line and its length by identical 
notation. 
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The fact that the discounted golden-rule stock is a solution to a maximiza
tion problem in which the objective function u maximized over the constraint 
set Q and an additional (discounted) sustainability constraint, we follow [6] 
to appeal to Uzawa's version of the Kuhn-Tucker theorem [43] and obtain an 
associated shadow price p such that 

u{x, x) + {p- l)px > u{x, x') -h p{px' - x) for all (x, x') € Vt. (1) 

We can now follow Radner [34] and define the value-loss 5(̂  ̂ ^ (x, x') at the 
golden-rule price system p associated with the one-period plan {x^x') by re
writing the above as^^ 

5^^^^Ax^x')=u{x^x) + {p—l)px — u{x^x')—p{px' — x) forall {x^x')eQ>. 
(2) 

We turn to the determination of the golden-rule price system p. Towards 
this end, consider Figure 1, and note that the zero net investment one-period 
plan M, given by (1, (1 — d)), can be substituted in (1) to yield 

x + {p— l)px > 1 -f pp{l — d) —p 

=^ (pp)-i(i -x)< - (1 -d) + p-1 + UP -1)1 p)x 

.._i / d p-l _ M"M , G"R' 
^^^~ ^T^--r = WM^ M'M RR' 

(3) 

By the same token, the maximal net investment, zero consumption one-period 
plan V, given by (0,1/a), can be substituted in (1) to yield 

Since the lines M'M" and OVi have identical slopes, we obtain 

1 _ OV_ G"R' _ OV + G"R' _ OV + OR _ VR^ 
^^^^ ~ OG" "̂  RR' " OG" " RR' ~ RR'' ^ ^ 

In terms of the geometry exhibited in Figure 1, the common slope of the lines 
M'M" and OVi is negative of that of the line VG". Now by (5), we know 
that pp is given by the difference in the slopes of M'M" and RG" which is 
equivalent to the (negative) of the difference in the slopes of G"V and OR'. 
It is interesting that this difference is given by the slope of the line VR'. We 
now have the geometric characterization of the golden-rule price system that 
we seek. 

. pp RR'G'R G'R , • ., , G'R VG' ,^, 
''=7^=VRRR/=VR ^"^ ^'-^^ = ' - V R = V R ' ^^^ 

^^ We shall abbreviate S^^^.^{x, x') by S^ix, x'). 
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It is thus clear that the ratios exhibited in (6) above depend on the dis
count factor p, and hence that the golden-rule price responds to p even though 
the discounted golden-rule stock does not. What is interesting that the ratio of 
(1 — p) to pp is independent of p, and is identical to the slope of the MV line. 
Formally, 

^ G'G VR RR' pp ' ^ ̂  

This allows us to rewrite the equation of the line MV as 

x' = :^x -{-C =^ x = :^x -h C 
pp pp 

= > ppx' + (1 — p)x = X = u(x, x). (8) 

All that remains is the determination of the zero value-loss line, which 
is to say, the locus of all one-period production plans for which S^ = 
*fp,x)(^' ^') = ^ where, from (2), 

S^ = u{x, x) + (p — l)px — u(x, x^) — p{px' — x) 

— [u(x, x) -\- {p— l)px — X — p{px' — x)\ -f- [a: — u{x^ x')] (9) 

= shortfall from golden-rule utility level -h idle capacity. 

Now for all points on the line MV, there is no idle capacity and therefore, on 
using the equation (8) above, we obtain the fact that there is zero value-loss. 
Proceeding in the converse direction, a zero value-loss implies that both terms 
in (9) are zero^^, and that therefore (x, x') satisfy (8), and therefore constitute 
the line MV. 

Finally, as in [14], we are now in a position to determine the value-loss of 
any one-period production plan, which is to say, of any point (x, x') G Q.. Lines 
parallel to MV are indeed iso-value-loss lines, but they depict the value-loss 
after taking excess capacity into account. In Figure 2, consider a one-period 
production plan, say F with coordinates {xaiXo), in the surplus labor triangle 
MOV, There is no excess capacity of capital and hence its utility is furnished 
by its first coordinate, leading to the second term in (9) being zero. Hence 
its value-loss consists only of its shortfall from golden-rule utility level, the 
first term in (9). This is given by the difference between x and the abscissa 
of the point of intersection of the line RG and a line M'V parallel to MV 
and passing through F. Let the coordinates of this point of intersection T be 
given by (x, p~^x -f p~^ (p — l)x), and hence the equation of the line M'V is 
given by 

x' = - ^ x ^C=^x' = - ' - ^ x + -4 + ('-^)x. (10) 
pp pp pp \ p J 

^^ Idle capacity is non-negative. 
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We can now obtain the shortfall from the golden-rule utility level that we seek. 
Since 

—I = (xo-\ —Xa) - ( )x => X = ppXo + (l - p)Xa - {p - l)pX, 
PP \ pp J \ p 

u{x, x) — X = u{x^ x) + {p— l)px — ppXo — (1 — p)Xa 

= U{X, X) + (p - l)pX - [Xa + p{pXo - Xa)] 

= 6f'{Xa,Xo). (11) 

In this demonstration, we have also shown that any one-period plan on M^V 
has the same value loss. 

Next, we turn to one-period plans in the "open" parallelogram LVMD. 
In this case, value-loss stems from both excess capacity and from the negative 
shortfall from the discounted golden-rule utility level. We have already seen 
that this shortfall is the same for all plans on the line 5152 parallel to MV, and 
is given by the difference between x and the abscissa of the point of intersec
tion 53 of 5i 52 and the line RG. In order to show that 5i 52 is an iso-value-loss 
line, all that remains is for us to show that the excess capacity associated with 
any one-period production plan on it, say 52, 53, 54 or 5i, is identical. But this 
is easy from our procedure for computing excess capacity: all of the triangles 
with vertices 5i , 52 and 54 exhibited in Figure 2 are congruent, and hence 
their bases are equal. 

Next, we show that the value losses increase as iso-value loss lines move 
"away" from the zero-value loss line MV in either direction. This is clear when 
we limit ourselves to the full capacity, surplus labor triangle MOV. The diffi
culty concerning one-period plans in the full employment, excess capacity area 
LVMD lies in the fact that as MV moves outwards, both the negative short
fall from golden-rule utility as well as the excess capacity increase. However, 
the latter increases more than the former. To see this, consider the parallel lines 
M'V^ and M'^V" in Figure 3. The increase in the shortfall amounts to 0:1X2, 
whereas the increase in the excess capacity is the amount W1W2. To see that 
W1W2 is always greater than X1X2, draw a line V^F parallel to the line RG, 
and simply observe that the difference in the abscissae of the points F and V 
(which is X1X2 since triangles with vertices F and F ' are congruent) is greater 
than W1W2. And this is always so by virtue of the fact that the slope of the 
line RG is steeper than the slope of OD, (and of VL) which is another way of 
saying that the rate of depreciation d and the discount factor p are always less 
than unity. 

We have now substantiated our claim that the geometric arguments pre
sented here simply generalize those developed in [14] for the undiscounted 
case. We now simply work around the RG line instead of the 45°-degree line. 
All that remains is to show that a path with a minimal value loss is an optimal 
path among all paths starting from the same initial capital stock. We present 
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Fig. 3. Changes in value-loss as VM moves outwards. 

a verification of this straightforward claim in the Appendix, and turn to the 
delineation of optimal programs. 

5. The case-1 < ^ <1 

We are now in a position to apply the basic geometrical apparatus developed 
above to the case where the MV line has a slope less than one in absolute 
value. For any initial stock in the unit interval, a standard cobweb exercise 
shows that a program chosen on the MV line converges to the discounted 
golden-rule stock G; the reader can draw for herself a diagram analogous to 
Figure 1, or refer to Figures 8 and 9 and the associated text in [14]. But such 
a program makes a zero-value loss, and therefore by a transposition of Brock's 
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argument to the discounted case, as presented in the Appendix, it is optimal. 
For initial capital stocks greater than one, there is value-loss but it is minimal 
for programs that choose on the relevant point of the OD line, just as in [14]. 
We have thus shown the optimal policy functions in the case — 1 < ^ < 1 
to be independent of the discount factor p and there to a unique optimal path 
with damped fluctuations in the case 0 < ^ < 1 and monotonicity in the case 
- 1 < ^ < 0. 

This basic observation that the feasibility of full-employment and zero 
excess-capacity paths throughout time implies their optimality of course also 
extends to the case ^ = 1 with initial capital stocks in the [1 — c?, 1]. However, 
since there is optimal policy correspondence in this case rather than an optimal 
policy function, and for other reasons to be made explicit in the sequel, we 
relegate it to a separate section. 

We conclude this subsection with the observation, reminder really, that the 
independence of the optimal policy functions from the discount factor, also 
imply the independence of the von-Neumann and McKenzie facets from the 
discount factor. Furthermore, for all values of ^ in the interval ] —1,0], and 
for a computable threshold in the interval ]0,1[, the two types of facets are 
identical. 

6. The case ^(1 - d) = 1 

In the case ^ > 1, there are no feasible paths with full-employment and zero 
excess capacity throughout, except the golden-rule point. So, we must have 
some value-loss along optimal paths starting from initial stocks other than the 
golden-rule stock. Thus, this is the interesting case, and it is now possible that 
discounting makes a difference. Future value losses are discounted compared to 
current ones, and so it might not be optimal to suffer the entire value loss in the 
initial period, unlike the undiscounted case. We focus on a specific parametriza-
tion. 

6.1 The benchmarks 

In order to get a geometric perspective on this case, consider Figure 4 in which 
V is a point such that the segment OV = OV = 1/a, This implies that 
ZOVV = ZOV'V = 45°-degrees, and that AOVC = AOV'C are congru
ent right-angled triangles, where C is the point of intersection of VV with the 
45°-degree line. Let the vertical from C intersect the X-axis at C" and the line 
OD at Ci. Join V^ to Ci and let its extension intersect the F-axis at C". Given 
the 45°-degree angles, ZCOV = ZCV'O, OC = CC = C'V which iden
tifies the capital stock x = l/2a, and A O C C = AV^CC as congruent, and 
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45° line 

x'=(l/^)((1/a)-x) 

= (l-d)((l/a)-x) 

~^^ G^"! C' M ' " ^ 

G'=(0,x),C= (ax) = (0,1/2a), M' = (0,x"); CiC2 = (d/2a) 

Fig. 4. Benchmarks in the case ^(1 - d) = 1 or a = ^(1 + ^^) or (1/a) 
( l - c / ) + ( l - d ) - i 

hence the slopes of the lines OD and V'C" as identical. Since AOC'Ci ~ 
AOV'C' and the segment C T ' is half of OV\ the segment CiC is also half 
of 0C\ which is to say, that the length of OC is twice (1 - d)x which equals 
((1 — d)/a). This furnishes the equation of V^CiC'\ an important benchmark 
line dual to the line OD, as 

x' = - ( l -d )x-h( l -d ) /a = {l-d){{l/a)-x) =^ x = ^x'-l/a, (12) 

It is important to note that so far we have not used the distinguishing char
acteristic of the case that we are considering; namely that MV is perpendicu
lar to OD. This translates geometrically into the fact that ZDOV = ZOVM. 
[Z.OVM is complementary^^ to Z.VOD which is complementary to ZDOV',] 

^^ We recall for the technically advanced reader the high-school terminology whereby 
complementary angles are two angles that sum up to a right angle. 
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Now let G denote the intersection of the Hne V'C" with the 45°-degree 
line. We have to show that G is the point that designates the discounted golden-
rule stock, which is to say that it is also the intersection of MV and the 
45°-degree line. Towards this end, we consider AVG^^G and IW'GG'. Since 
/.CVO = ZCV'O and ZOVM = ZGV'O, ZCVG = ACV'G which im
plies that A C F G = l\CV'G which implies that l\VG"G = IW'GG' which 
implies that GG" = GG\ which is to say that G indeed designates the dis
counted golden-rule stock. 

Now the full (and somewhat surprising) symmetry of the case under con
sideration becomes evident. Let the horizontal from C intersect MV at C3, 
and the horizontal from Ci intersect the 45°-degree line at C2. It is easy to 
see that AOCCi is congruent to AOCC3, and that AOC1C2 is congruent 
to AOC3C2. Since C and C2 lie on the 45'^-degree line, the quadrilateral 
CC1C2C3 is a square. This establishes x as a benchmark initial stock which 
leads to 2-period cyclical path. 

It is now easy to "complete the square" of side OV with mid-points Cn , 
C\ C" and G'". This estabhshes the coUinearity of G", C3, G and Cn on the 
one hand, and that of G'", C, G\ and G' on the other. C is a central point in 
that it is the center of the square OV'V'V. Note also the central pentahedron 
GGMMiGi, where Mi be the point of intersection of V^D' and the horizontal 
from M. Since Gx is a perpendicular bisector of MMi, the capital stock x 
represented by the abscissa of Mi, is given by (1/a) — 1. (x, 0) is dual to the 
point (1,0) in the sense that it occupies the same position with respect to V 
that (1,0) occupies with respect to V. Another way of saying this is that it 
is dual in the same sense that x is dual to xi , and that x is dual to itself. We 
leave it to the reader to show that the line MV extends to G\ and that the line 
MiGi extends to V" on the one hand, and to C on the other. Finally, since 
AOMG = AV'MiGu ZYM^Gi is a right angle and the line V'Mi is "dual" 
to the line MV. 

We now use the benchmarks established in Figure 1 to identify a facet that 
is closely related to the McKenzie facet on the von-Neumann facet MV in 
a way specified in Section 6.5 below. We redraw Figure 4 as Figure 5 in which 
the primary focus is on the lines MV and V'G, and on the point Mi. Let 
the horizontal from Mi (and from M) intersect the 45°-line at M2, and the 
vertical from it intersect the same line at M4. Let the horizontal at M4 inter
sect the line MV at M3, continuing on to M". Join M3 and M2. We claim that 
M3 M2 equals Mi M2, and that consequently Mi M2 M3 M4 is a square. For this 
demonstration, note that AGGV = AGGV' implies that ZGGV = ZGGV 
which in turn implies that ZM2GM3 = ZM2GM1. Since ZOVG = ZOV'G 
(a distinguishing characteristic of the case under consideration), and since 
M4 lies on the 45°-degree line, and therefore with its abscissa equal to its or
dinate (equal to x), AV'Mix = AVM"Ms. This implies that VM^ = V'Mi 
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45° line 

MiM2 = d/(l-d), M6M9 = d(1-d) 

Fig. 5. Four-period cycles in the case ^(1 — d) = 1 

which in turn implies that GMs = GMi. Hence^^ AM3M2G = AM1M2G, 
and hence M3M2 equals M1M2. The demonstration is complete. 

A byproduct of the above demonstration is the establishment of an impor
tant property of the line V'G. This is simply that any point on it can be use4 in 
conjunction with the line MG and the 45°-degree line to "complete a square." 
The length and the center of the square will vary with the vertex chosen, but the 
point G will be an important invariant. Indeed, we have already seen two such 

^̂  Note that for the congruence of the triangles we are appealing to the criteria of the 
equality of two sides and that of the angle between them. Since the whole point of 
the exercise is to show that M3M2 is a vertical, we cannot appeal to the criterion 
of equality of one side and two angles. Our (successful) demonstration also proves 
that M3M2, and hence that ZM2M3G = ZM2M3G which in turn equal ZOVG 
and ZOV'G. 
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squares, with vertices Ci and Mi. The argument can be easily abstracted and 
shown to rely on two congruences: /\CGV = ACGV\ and the other between 
the triangles with vertices V and V. This establishes the consequence of two 
residual triangles and completes the demonstration of the figure being a square. 

Now, let the horizontal from M5 intersect the line V'G at M9. By the 
argument above, we can complete the square from Mg. Let its vertices be 
M^M-jMsMg. We shall now show that this square is dual to the square 
M1M2M3M4, and that the square C1C2C3C, identified in Figure 4, is dual to 
itself. But for this we need to first show that the vertical M^Mg is the same as 
the vertical through M. For this we have to show that MMiM^Mg is a rectan
gle. Since^^ AMM1M5 = AMM1M9, MMi = M5M9 and MM5 = M1M9. 
The demonstration of the rectangularity of the figure, and of the linearity of 
MMQMS is complete. 

Once we show the equality of the segments M^MQ and M1M5, we would 
have established a 4-period cycle for an initial capital stock of unity. But 
this equality is a simple consequence of the equality of AMrM^Mio and 
AM10MM9. Note that in this cycle, a period of depreciation from 1 to 1 — d 
(M to M2) is followed by a major investment program to x (M2 to Mi) 
followed by another phase of depreciation, more substantial than the first, 
to (1 — d)x (M5 to Me) followed by a final smaller investment phase from 
(1 - d)x to unity (MQ to M9). It is now easy to check that the ampli
tude of the larger square is given by d/{l — d), and that of the smaller by 
d{l — d) resulting in a ratio of 1/(1 — ĉ )̂ . The average amplitude is given by 
(l/2)(i(l ~ d-\- (1/(1 - d)) = d/2a, which is precisely the amplitude of the 
square with vertex Ci identified in Figures 4 and 5. 

All of this suggests an interesting interchange as we move the initial capital 
stock along MMi in Figure 5. For any point m not equal to Ci on the interval 
MCi, there is a point m' on the interval C1M5 in V'M' such that a square 
with vertex n intersects the interval MM5 certainly at m, but also at another 
point m!. At the point Ci, the vertex of the relevant square, as well as its points 
of intersection with MM5 are all C\ itself. The projection of the interval MM5 
on the von-Neumann facet MV is given by MMio, and along with the point G, 
it has an interesting connection to the McKenzie facet that is adumbrated below. 

So far there is no presumption that all these paths constitute the optimal 
paths or that the upper envelopes of the lines MV and OD constitute the op
timal policy function. This obviously depends on the discount factor p and we 
turn to this. 

^̂  The criterion for the congruence of the two triangles is of one side and three angles. 



368 M.A. Khan, T. Mitra 

x'=(1/p)x+((p-l)/p)x 45° line 

/ 

x'= -4x + (1/a) 

Fig. 6. Ratio of the value losses at ^2 and Â I 

6.2 The uniqueness of p 

A singular feature of the particular model under consideration is that the 
golden-rule stock is independent of the discount factor, and the golden-rule 
price depends on it in the way delineated in Equation (7). We shall now exhibit 
another somewhat surprising property of the model; namely, that the ratio of 
the value-losses of two plans, S\ = (xi,x) and 52 = (0:2,^) in Figure 6, 
where x\ and X2 are both greater than f, is also independent of the discount 
factor. 

Note from our previous discussion, and from a consideration of Figure 6, 
that the value-loss of Si at a zero discount factor is /̂  J^, and at a discount factor 
of p is IiKi\ where z = 1, 2. By appealing several times to similar triangles, 
we obtain 

/ i J i __ DxCx _ BiCi _ GCi _ GAi _ AiCi _ hKi 

I2J2 D2C2 B2C2 GC2 GA2 A2C2 I2K2 

Indeed, as the discount factor goes to zero, p~^ goes to infinity, the RG line 
tends to the vertical and the value loss tends to excess capacity. This is brought 
out in the following 



hJl 
I2J2' 

hKi 

I2K2 

GCi 

~ GC2 

GSi 

~ GS2 
Gh 
GI2 
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(13) 

We can now use these results to establish the existence and uniqueness 
of a discount factor at which a four period cycle and a path converging to 
the golden-rule stock in one period yield identical utility. Towards this end, 
consider the function 

fip) = T ^ where 0 < p < 1. (14) 
l - p 4 

It is easy to check that 

/ '(P) = ^ ^ ^ ^ > 0 f o r a l l 0 < p < l , 

and that both 
lim /(p) = lim f{p) = oo. 
p-^i p-^i 

Now consider two paths each starting from an initial capital stock of unity 
in Figure 5. The first path involves a jump to the golden-rule stock where it 
stays, and the second goes from M to Ms to M5 to M7 back to M. Since M, 
Ms and M7 are all on the line MV, there is a loss in value only at the point M5. 

The value-loss for the first path is simply 5^(1, x). The value loss for the 
second path is 

6P{x, (1 - d)x) {p^ + p^+ ...) = p2/(l - p4) sP{x, (1 - d)x). 

Thus, the discount factor p that equates the value-losses of these two paths is 
given by the solution to the following equation. 

From the preceding discussion, we know that / is a strictly increasing func
tion over the unit interval with an asymptote at unity. We also know that the 
ratio of welfare losses is a constant function whose value is simply the ratio of 
excess capacity at the points (1, x) and (x, (1 — d)x). We thus obtain 

r : 
l-[l-a(^-(l-rf))]^a(^-(l_rf))^a(d-yff^) 

x-1 x-1 (1/a) - 2 

ad{l + ad — a) a _ a^d 

1 + ad l - 2 o (l-2a){l + ad) 
( ( l / a ) - l + d) 

"''^ . = ^̂  , , / ^ , , . , , (16) 
{l-2a){l + ady {1 - 2a){l + ad){l - d) 
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The following equation for p is then a fundamental one. 

'" - " ' ' ^ / + r - V - l = 0. (17) 
( l -p4 ) {l-2a){l-^ad){l-d) 

6.3 The optimal path 

We begin with the case where the initial capital stock is x. Consider two al
ternative paths: the first where the planner moves to the golden-rule stock and 
stays there (the straight-down-the-tumpike path); and the second, the path in 
which the capital stock keeps returning to the initial capital stock after two 
periods. In terms of Figure 4, the path moves from C to G compared to the 
periodic path from Ci to C2 to C3 to Ci. We now determine the value of the 
discount factor p that equates the aggregate value losses of these two paths. 
This is to say that we want the root to the equation 

5P{x, x) = 5P{x, (1 - d)x) (1 + p2 ^ p4 _̂  . . . ) 

5P{x,x) 1 
' 5p{x,{l-d)x) l - p 2 

Now, by Equation (13), and with reference to Figure 7, we obtain 

5P{x,x) 
5P{X, (1 - d)x) 

Now observe that 

CiCii 

_ GCii _ GC\i _ / C11C12 
GC12 GCii — C11C12 V GCii 

1 , CiCii ^ CuCi2 1 

(18) 

- 1 

We have thus shown that the root of Equation (18) is (1/^). 
Now consider another path alternative to the straight-down-the-tumpike 

path; namely, the path that moves from Cn to G in the {t -f- 2y^ period, t eJN. 
It is of interest that the discount factor p that equates the aggregate value losses 
of these two paths is also ^. To see this, we need to consider the root to the 
equation 

SP{X, X) = 6P{X, (1 - d)x) (1 + p2 + . . . + p2t) ^ ^2(t+l) ^p(-^ ^) 

SP{x,x) _ 1 
" ^ SP{x,{l-d)x) ~ l - p 2 ' (19) 

This simple result is of interest because it highlights circumstances in which 
a planner pursuing optimality has leverage as to when she can stop cycling. It 
leads to non-uniqueness in a way that has not been emphasized so far in this 
exposition. 
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tan"̂ ^ 
nvi WoW. 

Fig. 7. Determination of p in the case ̂ {l — d) = 1 

We now turn to the case where the initial capital stock is unity. Again, con
sider two alternative paths: the first where the planner moves to the golden-rule 
stock and stays there; and the second, the path that returns to the initial capital 
stock after four periods. In terms of Figure 5, the path that moves from M to G 
compared to the path MM3M5M7. We now determine the value of the dis
count factor p that equates the aggregate value losses of these two paths. This 
is to say that we want the root to the equation 

5^(1, X) = 6^{X, (1 - d)x) (p2 + p6 ^ . . . ) 

_ 5^(1, X) _ p2 
- P 6p{x,{l-d)x) l-p^ \p' 

Now, again by Equation (13), and with reference to Figure 7, we obtain 

6P{l,x) GM' GM' 

(20) 

5P{x,{l-d)x) GM52 
_ ^ /GM51 M 5 l M 5 2 y ' 

GM51-M51F52 \GM' GM' ) ' 

Next, consider AM52M5G1. By the distinguishing characteristic of the case 
that we are considering, this is right-angled triangle, and therefore has the prop
erty that̂ ^ 

M51M52 ^ l_ 
G1M51 e' 

^^ This follows from the elementary argument that M51M52 = {l/i)MzMz\ and 
G1M51 = (6M5M51. 
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Again, by considering AGMiGi, and appealing to the same property of right-
angled triangles, we obtain 

G1M51 ^ 2 
GM51 ^ • 

Since GM' = G1M51, we have shown that the root of Equation (20) is (1/0-
Next, consider the case where the initial capital stock is x. Again, consider 

two alternative paths: the first where the planner moves to the golden-rule stock 
and stays there; and the second, the path that returns to the initial capital stock 
after four periods. In terms of Figure 5, the path that moves from M5 to G 
compared to the path M5M7MM3. We now determine the value of the dis
count factor p that equates the aggregate value losses of these two paths. This 
is to say that we want the root to the equation 

SP{x, x) = SP{x, (1 - d)x) (1 + p^ + / + . . . ) 

SP{x,x) _ 1 

" ^ SP{x,{l-d)x) ~ l - p 4 * 

Now, again by Equation (13), and with reference to Figure 7, we obtain 

(21) 

S^jx^x) ^ GM^i ^ GM51 ^ / M s i M s s V ' 
sp{x,{i-d)x) GM52 GM51-M51M52 V GM51 ; 

V G1M51 G M 5 1 ; (̂  e V * 

We have thus shown that the root of Equation (21) is (1/^). 
Next, consider the case where the initial capital stock is given by the ab

scissa of the point W in Figure 7. By the argumentation presented above, there 
is a feasible path that returns to W after 4 periods and is at Ws after 2 periods, 
where MW = VF5M5. We now determine the value of the discount factor p 
that equates the aggregate value losses of this path as compared to the path that 
moves to the golden-rule stock in one period. This is to say that we want the 
root of the equation 

GWi = -^GW2 + -^GW^2 

= T ^ ' ^^2 + T - ^ ( G M 5 2 - W52M52) 
1 — p^ I — p 

= - J — GW2 + - ^ ( G M 5 2 - GW2) 
1 — p^ 1 "" p 
1 - p2 p2 

= - - ^ GW2 + - ^ GM52 (22) 
I — p^ I — p 
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We shall now show that the root of Equation (22) is ^. Towards this end, we 
recall from Equation (20) that with p— 1/^, 

^' - ^ ^ ' - '^^ GM.. = GM'. 
1 - p4 GM52 1 - p^ 

Furthermore, with p= 1/^, and again appealing to the property of right-angled 
triangles, we obtain 

WoWoo 2 ^ ^ 0 0 . 2 MWQ M'Wi 1 
MWo "^ MWo "^ MWQQ GW2 l + p2-

Putting these expressions together, we see that the right-hand side of Equa
tion (22) is given by GM' plus M'Wi which is precisely equal to the left-hand 
sideGP^i. 

We now return to the case where the initial capital stock is unity but com
pare the straight-down-the-tumpike path with one that begins at the point Mi 
in Figure 7 and returns to (say) W after four periods. We now determine the 
value of the discount factor p that equates the aggregate value losses of these 
two paths. This is to say that we want the root to the equation 

CM' = — ^ GW2 + 7 ^ GW^2 - MiW 
1 — p^ 1 — p^ 

which in turn implies that we seek the root of the equation 

GWi = - i - ^ GW2 + - ^ GH^52. 

But this is precisely Equation (22), and we have already determined one of its 
roots to be (1/^). 

We now remain with the case where the initial capital stock is unity 
but compare the straight-down-the-tumpike path with one that begins at the 
point Ma in Figure 7. The distinguishing characteristic of this case is that in the 
initial periods the second path stays in the segment MQG of the von-Neumann 
facet and sustains no value-losses. Furthermore, depending on the proximity 
of Mii to M ' (the proximity of the ordinate of Ma to the golden-rule stock), 
the number of these initial periods, even though finite, can be arbitrarily large. 
In any case, since ^ > 1, there is a first time period at which the value of the 
capital stock of this path is greater than or equal to unity, and less than or equal 
to the abscissa of M5. Without loss of generality, let this value be given by 
the abscissa of W. We now determine the value of the discount factor p that 
equates the aggregate value losses of these two paths. This is to say that we 
want the root to the equation 
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1 O^ 
GM' = J GW2 + - ^ GW^2 - M^W 

1 — p'* 1 ~ P 

which in turn implies that we seek the root of the equation 

GM' = - ^ GW2 + T - ^ GWr,2. 

But this is again precisely Equation (22), and we have already determined one 
of its roots to be (1 /0-

6.4 The optimal policy function 

Define the following two real valued functions on IR+: 

h(x) = max[—^x 4- (1/a), x, (1 - d)x'\ 

g{x) = max[—^x + (1/a), (1 — d)x\. 

Letp = ( l /0» then the optimal poHcy correspondence is given by 

{ [x G IR+ : h{x(t)) <x< g{x{t))] when p = p 

h{x{t)) when 1> p> p 

g{x{t)) when 0 < p < p 
6.5 Some additional facets 

We return to Figure 5, and in particular to the policy function VMD, optimal 
for values of the discount factor less than (1/0- In the discussion at the end of 
Section 6.1, we noted the existence of a point n on MiCi and two correspond
ing points, m and m' on MGi which are dual in the precise sense that a square 
with vertex n intersects OD at the points m and m\ And as n moves contin
uously between Mi and Ci, the points m and m' move continuously from M 
and M5 on OD towards Ci and yield a continuum of 4-period cycles. These 
properties are a testament to the symmetry of Figure 4, something not as trans
parently apparent when one considers the (algebraic) equality x{l - d) = 1, 
Hence also the subset MM5 of the graph of the optimal policy function, as well 
as its projection MMio, (in short, the rectangle MM1M5M9 in Figure 5), is 
of considerable interest. 

Note, to begin with, that the interval M7M3 is not the McKenzie facet, even 
though it is a subset of the von-Neumann facet VM. The reason is straightfor
ward; the optimal program steps out of it for one period after having stayed in 
it for two subsequent periods, and it does so for all periods of time. As such, 
we shall refer to it as the mi-facet. The mo-facet is indeed the McKenzie facet, 
and in principle, we can define an nii-facet, for all z > 0. 



A geometric investigation 375 

However the segments MC1M5 and M01C11M51 on the OD line, more 
relevantly, on the graph of the optimal policy function, are also akin to the 
mi-facet. They represent plans that reach the mi-facet in one period, but since 
they do not lie on the von-Neumann facet cannot be designated as constituting 
an m2-facet. We shall refer to them as constituting an mi{l)-facet. But now 
the procedure is clear: just as the interval M01C11M51 is a "stretching" of the 
MC1M5 interval, M02C12M52 is a "stretching" of the M01C11M51 interval 
and can be said to constitute the mi{2)-facet. And similarly for the mi{i)-
facet as having been constituted by the interval MoiCuM^i on OD, for all 
i > 0 . 

The alert reader has surely noticed the gaps M5G1, M51G2,..., M^iGi^i 
on the graph of the optimal policy function represented by the line OD. It 
makes sense to refer to the interval M^iGi^i as the v{i)-facQU where i > 1; 
a plan on the t;(i)-facet is not on the von-Neumann but can reach it in i periods. 
Thus, the von-Neumann facet is really the t;(0)-facet. There are however points 
on the von-Neumann facet that can reach a particular t;(z)-facet in one period. 
We shall refer to them, analogous to our treatment above, as constituting the 
Vi-facQts, In this case, the index i has an upper bound. 

It is important to note that these benchmarks, and the decompositions of 
the von-Neumann facet associated with them, can be used for a detailed exam
ination of the von-Neumann facet in other examples, and most preferably, in 
the general situation. 

7. The case ̂  = 1 

In [14], the claim is made that the optimal policy correspondence for the undis-
counted RSS model for the case ^ = 1 is given by^^ 

({xeJR^: -^{x{t)) + (1/a) < x(t) < (1 - d){x{t))} 

when X < x{t) < x/{l - d) 

i{x{t)) + (1/a) when 0 < x{t) < x 

[ (1 - d){x{t)) when x{t) > x/{l - d) 

x{t^l) e < 

In the undiscounted case, one should have expected non-uniqueness of optimal 
paths for ^ = 1 on the ground that optimal behavior ought to be continuous 
in the parameter values. That is, the cyclic optimal path for ^ = 1 is just the 
limiting case of the unique optimal path with damped fluctuations for ^ < 1. 
And the straight down the turnpike optimal path for ^ = 1 is the limiting case 
of the unique straight down the turnpike optimal path for ^ > 1. 

^̂  Also see the partial verification of this claim in [15]. 
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45" line 

x'=(l/^)((1/a)-x) 

= (l-d)((l/a)-x) 

V' = x i = x X 

X = (0,1/23), MiM2=(d/2a) 

Fig. 8. Benchmarks in the case ̂  = 1 

We leave it as a routine exercise for the reader to apply the geometrical ap
paratus developed here to show that the optimal policy function is given by the 
"check map" VMD in Figure 8, and that one obtains persistent symmetric fluc
tuations, 2-period cycles, from initial stocks in [1 — ci, 1]). The non-uniqueness 
issue cannot arise for ^ = 1 in the discounted case, because the transversal-
ity condition takes care of the "terminal capital stocks terms" always, whereas 
they continued to be a factor to take into account even asymptotically in the 
undiscounted case. Thus, we must have uniqueness for all p less than one, and 
then the continuum (which would of course include the persistent symmetric 
fluctuations path) when p equals one. There is nothing in the model to disturb 
upper hemicontinuity of the correspondence. It is thus of interest that the only 
difference between the discounted and undiscounted cases lies in that there is 
no possibility of non-uniqueness of optimal paths for the case ^ = 1. 

We also leave it to the reader to give a complete decomposition of the 
graph of the optimal policy correspondence in terms of the von-Neumann and 
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McKenzie facets, as well as the affiliated facet concepts developed in Sec
tion 6.5 above. The ease and completeness with which this can be done sug
gests perhaps the analytical use and viability of the facet concepts we formulate 
motivated by the case ^{1 - d) = 1. 

However, there is an aspect of the case ^ = 1 that is brought out by the 
geometrical treatment offered in this essay. This is the interplay between it and 
the case ^{1 — d) = 1 that gives insight into both, and in particular allows 
us to see the second as a degenerate specialization of the first. Note that the 
distinguishing characteristic of the first case, as brought out in Figure 4, is that 
the line V'M\ dual to the line VM, has the same slope, in absolute terms, as 
the line OD. Or to put the matter in terms of the OD line, its dual line O C 
has the same slope as the MV line. To put the matter yet another way, the 
triangle AOC3V and AOCiV are both isosceles triangles whose larger side 
is precisely equal to the side of the square VOW". 

It is these synmietries that are inherited by the geometry of the case ^ = 1 
presented in Figure 8. Figure 8 is simply the case where the lines MV and 
M'V are collinear. In terms of an algebraic presentation, 

x' = -^x + (1/a) ^^x' = ( l / 0 ( ( l / « ) - ^) ^ ^ = 1. 

Thus the case ^ = 1 can be seen as the limit of a procedure whereby the point G 
moves to the point C. Such a procedure is visually evident by looking at Fig
ures 4 and 8 together: in Figure 8, M moves to Mi, Ci is pulled up to Gi, 
and Cii is pulled down to Gi. Thus the kinked two-line segment GCGi in 
Figure 4 collapses to the segment GGi in Figure 8, the kinked two-line seg
ment GMMi in Figure 4 collapses to the segment GM in Figure 8, and finally, 
the segment MiGi in Figure 4 remains the same MiGi segment in Figure 8. 
In summary, the pentahedron MMiGiCG of Figure 4 is transformed to the 
triangle MCGi of Figure 8. Now, the two period cycle emanating from Gi 
in Figure 8 becomes the discounted golden-rule stock, and hence the 0-period 
cycle, and the and the continuum of four period cycles degenerates to a contin
uum of two period cycles! 

8. Concluding observations 

It bears emphasis that despite all this work, the characterization of an optimal 
program in the two-sector RSS model with discounting remains essentially 
open in the case when ^ is greater than unity. We have only considered two 
values in this continuum. However, through an exploitation of their particular 
structural characteristics, we have provided a complete analysis for those two 
values. In terms of economic substance, we have shown the existence of a con
tinuum of four-period cycles in case ^(1 — rf) = 1, and a continuum of two-
period cycles in case ^ = 1. Indeed, we have substantiated the sense in which 
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we view the second as a degenerate case of the first. For both cases, we have 
furnished a value for the threshold discount factor above which the optimal 
policy functions, and hence the optimal transition dynamics, remain identical 
between the discounted and the undiscounted cases. Furthermore, in addition 
to the delineation of the von-Neumann and McKenzie facets, we have concep
tualized and computed subsets of the graph of the optimal policy function, the 
so called m^-facets and t̂ ^-facets, that can be seen as their natural extensions. 
One of the important consequences of this completed analysis is that, unlike 
the case in [17], it rules out the possibility of chaos in the two particular cases 
we consider, no matter how small the discount factor. 

In terms of the contribution to the geometrical analysis, the fact that the 
discounted golden-rule stock is independent of the discount factor, that the 
MV line remains the zero value-loss line even at the discounted golden-rule 
prices (which do depend on the discount factor) and retains all its properties, 
are pleasant facts which make the geometry viable. But perhaps the most im
portant has been the discovery of the M'V line dual to the MV line, obtained 
by "completing" the relevant square. The fact that its intersection with the OD 
line yields the capital stock at which there are two-period cycles is an important 
benchmark. It also holds generally; that is to say, for all values of ^ > 1. 

It seems clear, however, that the complete characterization of the optimal 
policy for the entire case ^ > 1 is a difficult problem despite, perhaps because 
of, a model consisting of only three numbers (a, d, p), two of which lie in the 
unit interval. Because of the lack of differentiability, the possibility of a kink in 
the optimal policy function, assuming it is a function, precludes the application 
of the Euler-Lagrange variational equalities generally available in the calculus 
of variations; see [29, 30] and his references. Further progress will be had on 
a case by case basis involving geometry certainly, but possibly also numerical 
specifications to build up one's intuition. We intend to proceed along this path 
in future work. 

9. Appendix 

Let IN be the set of positive integers, and IN' = IN U {0}. Consider any two 
feasible paths {x^{t)}teJN' and {x''{t)}teW' Then for any T G IN, we obtain 
by appealing to (2) above. 

T 

I 
t=0 

J2 p\<x'{t), x'{t + 1)) - u{x"{t),x"{t + 1)) 

x:^*+^p(x"(t+1) - x'{t+1)]+[Mx'{t) - x"{t))\ 
t=0 
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+ [p\6^{x'\t),x'\t + 1) - S^{x\t),x\t + 1)) 

= [p^^'p{x'\T + 1) - x'{T + 1)] + [p{x\0) - x''(0)] 
T 

+ ^p\5^{x'\t),x''{t + l)-S^{x\t),x\t+l)). 
t=0 

Since x'{t) and x"( t ) lie in a bounded set for all t e IN', (see [16]), and since 
0 < p < 1, we obtain, for the case x'(0) = x'\0), 

J2p\u{x\t),x\t + 1)) - u{x'\t),x'\t + 1)) 

oo 

= J2p\Sf'{x'\t),x'\t+l) - 5f'{x\t),x\t + l)). 

t=0 

t=0 
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